Tuesday, June 3, 2008

Presidents Trophy Air Race

It was that time of the year again – the annual President’s Trophy Air Race. This year it was hosted in Witbank (eMalahleni) by Witbank Aeronautical Association(WAA). They are celebrating their 80th anniversary this year, making them the second oldest flying club in South Africa. Participating pilots arrived Thursday 29 May for registration and scrutinizing and the race ended on Saturday May the 31st.


The total distance for the race was 644.69 nautical miles (1193.96km)





CESSNA 182M SKYLANE









ROBINSON 44 II






ROBINSON 44 RAVEN II & ROBINSON 44 II

Thursday, February 14, 2008

Airshow Nelspruit,South Africa

May 19, 2007

A very nice airshow. Lots of action.
Got to meet the guys :
Silver Falcon display team




Their equipment:
Pilatus PC 7 Mk II Astra / 2018(2)








FLAMINGO - ZU FLA


FLAMINGO COCKPIT




Oryx Super Puma - 1228







P 166 ALBATROS - ZU ACI


Piaggio P116S Albatross - ZS-NJX


AERO L-39 ALBATROS






Agusta A-109 / 4012

Agusta 109 cockpit

Bell UH-1 Huey


Piper J-3 cub


M-18 DROMADER


SOCATA TBM 700 - ZS TBM


ATLAS CHEETAH C - NO.370 "Vlaggie"


BUSH AIR CESSNA
PITTS SPECIAL





The history of flight

Aviation history deals with the development of mechanical flight, from the earliest attempts in kite-powered and gliding flight, to the demonstration of sustained, controlled and powered heavier-than-air flight, and beyond.

Humanity's desire to fly possibly first found expression in China, where human flight tied to kites is recorded (as a punishment) from the sixth century AD. Subsequently, the first hang glider was demonstrated by Abbas Ibn Firnas in Andalusia in the 9th century AD. Leonardo da Vinci's (15th c.) dream of flight found expression in several designs, but he did not attempt to demonstrate flight. It was in post-industrial Europe from the late 18th century that serious attempts at flight took place, with progression from lighter-than-air (hot-air balloons, 1783), unpowered heavier-than-air (Otto Lilienthal, 1891), and finally, powered, sustained, flight (Wright Brothers, 1903).

Since then, Aircraft designers have struggled to make their craft go faster, further, fly higher, and be controlled more easily: List of important factors involved in inventing an airplane:

Control: Initially gliders were controlled by moving one's entire body (Otto Lilienthal) or warping the wings (Wright brothers). Modern airplanes are controlled with the help of control surfaces such as ailerons and elevators, and these are stabilized by a computerized system to the extent that it is not possible to fly certain military aircraft without these controllers.
Power: Aircraft engines have become lighter and more efficient, from Clement Ader's steam engine to piston, jet and rocket engines.
Material: Initially made of canvas and wood, aircraft materials moved to doped fabric and steel tubing, all aluminum monocoque construction (around WWII), and increasingly today, composites

Early Flight
The dream of flight is fueled by our observation of the birds, and is illustrated in myths across the world (e.g. Daedalus and Icarus in Greek mythology, or the Pushpaka Vimana of the Ramayana). The first attempts to fly also often drew on the idea of imitating birds, as in Daedalus' building his wings out of feathers and wax. Attempts to build wings of various materials and jump off high towers continued well until the seventeenth century.


Ancient Greece
Around 400 BC, Archytas, the Ancient Greek philosopher, mathematician, astronomer, statesman, and strategist, was reputed to have designed and built the first artificial, self-propelled flying device, a bird-shaped model propelled by a jet of what was probably steam, said to have actually flown some 200 meters.This machine, which its inventor called The Pigeon (Greek: Περιστέρα "Peristera"), may have been suspended on a wire or pivot for its flight.

Parachutes and Gliders in Umayyad Spain and England


Hot Air Balloons and Kites in China
The Kongming lantern (proto hot air balloon) was known in China from ancient times. Its invention is usually attributed to the general Zhuge Liang (180-234 AD, honorific title Kongming), who is said to have used them to scare the enemy troops:

An oil lamp was installed under a large paper bag, and the bag floated in the air due to the lamp heating the air. ... The enemy was frightened by the light in the air, thinking that some divine force was helping him.
However, the device based on a lamp in a paper shell is documented earlier, and according to Joseph Needham, hot-air balloons in China were known from the 3rd century BC.

During the Yuan dynasty (13th c.) under rulers like Kublai Khan, the rectangular lamps became popular in festivals, when they would attract huge crowds. During the Mongol Empire, the design may have spread along the Silk Route into Central Asia and the Middle East. Almost identical floating lights with a rectangular lamp in thin paper scaffolding are common in Tibetan celebrations and in the Indian festival of lights, Diwali. However, there is no evidence that these were used for human flight.

In 559, human flight using a kite was documented during a succession wrangle in the Northern Wei kingdom, according to the Comprehensive Mirror for the Aid of Government.[6] After the death of emperor Yuan Lang (513-532), his general Gao Huan took over as emperor. After Gao Huan's death, his son Gao Yang, had Yuan Huangtou, son of the erstwhile emperor, launched on a kite from a tower in the capital Ye. Yuan Huangtou floated across the city walls and survived the landing, but was soon executed. Possibly, the capacity of kites to carry humans, as remarked upon several centuries later by Marco Polo, was known even at this time.

Parachutes and Gliders in Umayyad Spain and England
Islamic Spain during the Umayyad renaissance under the Caliphate of Cordoba witnessed several attempts at flight by the Arab polymath and inventor Abbas Ibn Firnas (his name is sometimes Latinized as "Armen Firman", leading to some confusion whether these two are different people[7]), who was supported by the Emir Abd ar-Rahman II. In 852 he made a set of wings with cloth stiffened by wooden struts. With this umbrella-like apparatus, Ibn Firnas jumped off the minaret of the Grand Mosque in Cordoba - while he could not fly, his apparatus slowed his fall, and he escaped with minor injuries. His device is now considered to have been a prototype of the modern parachute.

Twenty-five years later, at the age of 65, Ibn Firnas came up with an improved design, which included the first flight control surfaces. He took this set of wings, considered to be the first hang glider, to a small hill called Jabal al-'arus, and apparently managed to fly for quite some time, by some accounts as long as ten minutes. This was the first attempt at controlled flight, as he was able to alter his altitude and change his direction in order to return to where he flew from. After successfully returning to his starting point, he eventually crashed to the ground, and said later that the landing could have been improved by providing a tail apparatus.[8][9] His flight was apparently the inspiration for Eilmer of Malmesbury, more than a century later, who would fly for about 200 meters using a similar glider (circa 1010).

Renaissance Europe and the Ottoman Empire
Some five centuries after Ibn Firnas, Leonardo da Vinci came up with a hang glider design in which the inner parts of the wings are fixed, and some control surfaces are provided towards the tips (as in the gliding flight in birds). While his drawings exist and are deemed flightworthy in principle, he himself never flew in it. Based on his drawings, and using materials that would have been available to him, a prototype constructed in the late 20th century was shown to fly. However, his sketchy design was interpreted with modern knowledge of aerodynamic principles, and whether his actual ideas would have flown is not known. A model he built for a test flight in 1496 did not fly, and some other designs, such as the four-person screw-type helicopter have severe flaws.

In the 17th century, the Ottoman traveller Evliya Çelebi reported that in 1630-1632, he saw the Ottoman Turkish polymath Hezarfen Ahmet Celebi using a winged aircraft to fly across the Bosporus. He jumped off the Galata Tower (55m high) in Istanbul, and allegedly flew a distance of about 3km, and landed on the other (Asian) side, uninjured. A glide of 3 km from a launching height of 55m would at best require a modern glider to have considerable skill and practice, though it is known Celebi had practiced considerably prior to his flight.

In 1633, Hezarfen's brother, Lagari Hasan Çelebi, launched himself in the air in a seven-winged rocket, which was composed of a large cage with a conical top filled with gunpowder. This was the first known example of a manned rocket and an artificially-powered aircraft. The flight was accomplished as a part of celebrations performed for the birth of Ottoman Emperor Murad IV's daughter. Evliya reported that Lagari had made a soft landing in the Bosporus by using the wings attached to his body as a parachute after the gunpowder was consumed, foreshadowing the sea-landing methods of astronauts with parachutes after their voyages from outer space. The flight was estimated to have lasted about twenty seconds and the maximum height reached around 300 metres. Lagari was rewarded by the sultan with a valuable military position in the Ottoman army.

In 1670 Francesco Lana de Terzi published work that suggested lighter than air flight would be possible by having copper foil spheres that contained a vacuum that would be lighter than the displaced air, lift an airship (rather literal from his drawing). While not being completely off the mark, he did fail to realize that the pressure of the surrounding air would smash the spheres.


Modern Flight

Lighter than air
Although many people think of human flight as beginning with the aircraft in the early 1900s, in fact people had already been flying for some 200 years.

The first generally recognized human flight took place in Paris in 1783. Jean-François Pilâtre de Rozier and François Laurent d'Arlandes went 5 miles (8 km) in a hot air balloon invented by the Montgolfier brothers. The balloon was powered by a wood fire, and was not steerable: that is, it flew wherever the wind took it.
Ballooning became a major "rage" in Europe in the late 18th century, providing the first detailed understanding of the relationship between altitude and the atmosphere.

Work on developing a steerable (or dirigible) balloon (now called an airship) continued sporadically throughout the 1800s. The first powered, controlled, sustained lighter-than-air flight is generally believed to have taken place in 1852 when Henri Giffard flew 15 miles (24 km) in France, with a steam engine driven craft.

Another notable advance was made in 1884, when the first fully controllable free-flight was made in a French Army electric-powered airship, La France, by Charles Renard and Arthur Krebs. The 170 foot long , 66,000 cubic foot airship covered 8 km (5 miles) in 23 minutes with the aid of an 8-1/2 horsepower electric motor.

However, these aircraft were generally short-lived and extremely frail. Routine, controlled flights would not come to pass until the advent of the internal combustion engine

Although airships were used in both World War I and II, and continue on a limited basis to this day, their development has been largely overshadowed by heavier-than-air craft.


Toward better understanding
The first published paper on aviation was "Sketch of a Machine for Flying in the Air" by Emanuel Swedenborg published in 1716. This flying machine consisted of a light frame covered with strong canvas and provided with two large oars or wings moving on a horizontal axis, arranged so that the upstroke met with no resistance while the downstroke provided lifting power. Swedenborg knew that the machine would not fly, but suggested it as a start and was confident that the problem would be solved. He said, "It seems easier to talk of such a machine than to put it into actuality, for it requires greater force and less weight than exists in a human body. The science of mechanics might perhaps suggest a means, namely, a strong spiral spring. If these advantages and requisites are observed, perhaps in time to come some one might know how better to utilize our sketch and cause some addition to be made so as to accomplish that which we can only suggest. Yet there are sufficient proofs and examples from nature that such flights can take place without danger, although when the first trials are made you may have to pay for the experience, and not mind an arm or leg." Swedenborg would prove prescient in his observation that powering the aircraft through the air was the crux of flying.

During the last years of the 18th century, Sir George Cayley started the first rigorous study of the physics of flight. In 1799 he exhibited a plan for a glider, which except for planform was completely modern in having a separate tail for control and having the pilot suspended below the center of gravity to provide stability, and flew it as a model in 1804. Over the next five decades Cayley worked on and off on the problem, during which he invented most of basic aerodynamics and introduced such terms as lift and drag. He used both internal and external combustion engines, fueled by gunpowder, but it was left to Alphonse Penaud to make powering models simple, with rubber power. Later Cayley turned his research to building a full-scale version of his design, first flying it unmanned in 1849, and in 1853 his coachman made a short flight at Brompton, near Scarborough in Yorkshire.

In 1848, John Stringfellow had a successful test flight of a steam-powered model, in Chard, Somerset, England. This was 'unmanned'.
In 1866 a Polish peasant, sculptor and carpenter by the name of Jan Wnęk built and flew a controllable glider. Wnęk was illiterate and self-taught, and could only count on his knowledge about nature based on observation of birds' flight and on his own builder and carver skills. Jan Wnęk was firmly strapped to his glider by the chest and hips and controlled his glider by twisting the wing's trailing edge via strings attached to stirrups at his feet.[4] Church records indicate that Jan Wnęk launched from a special ramp on top of the Odporyszów church tower; The tower stood 45 m high and was located on top of a 50 m hill, making a 95 m (311 ft) high launch above the valley below. Jan Wnęk made several public flights of substantial distances between 1866 - 1869, especially during religious festivals, carnivals and New Year celebrations. Wnęk left no known written records or drawings, thus having no impact on aviation progress. Recently, Professor Tadeusz Seweryn, director of the Kraków Museum of Ethnography , has unearthed church records with descriptions of Jan Wnęk's activities.
In 1856, Frenchman Jean-Marie Le Bris made the first flight higher than his point of departure, by having his glider "L'Albatros artificiel" pulled by a horse on a beach. He reportedly achieved a height of 100 meters, over a distance of 200 meters.

In 1874, Félix du Temple built the "Monoplane", a large plane made of aluminium in Brest, France, with a wingspan of 13 meters and a weight of only 80 kilograms (without the driver). Several trials were made with the plane, and it is generally recognized that it achieved lift off under its own power after a ski-jump run, glided for a short time and returned safely to the ground, making it the first successful powered flight in history, although the flight was only a short distance and a short time.
Another person who advanced the art of flying was Francis Herbert Wenham, who unsuccessfully attempted to build a series of unmanned gliders. During his work he found that the majority of the lift from a bird-like wing appeared to be generated at the front, and concluded that long, thin wings would be better than the bat-like ones suggested by many, because they would have more leading edge for their weight. Today this measure is known as aspect ratio. He presented a paper on his work to the newly formed Royal Aeronautical Society of Great Britain in 1866, and decided to prove it by building the world's first wind tunnel in 1871.[13] Members of the Society used the tunnel and learned that cambered wings generated considerably more lift than expected by Cayley's Newtonian reasoning, with lift-to-drag ratios of about 5:1 at 15 degrees. This clearly demonstrated the ability to build practical heavier-than-air flying machines; what remained was the problem of powering them, and controlling the flight.


Picking up the pace
The 1880s became a period of intense study, characterized by the "gentleman scientists" who represented most research efforts until the 20th century. Starting in the 1880s advancements were made in construction that led to the first truly practical gliders. Three people in particular were active: Otto Lilienthal, Percy Pilcher and Octave Chanute. One of the first truly modern gliders appears to have been built by John J. Montgomery; it flew in a controlled manner outside of San Diego on August 28, 1883. It was not until many years later that his efforts became well known. Another delta hang-glider had been constructed by Wilhelm Kress as early as 1877 near Vienna.

Otto Lilienthal of Germany duplicated Wenham's work and greatly expanded on it in 1874, publishing all of his research in 1889. He also produced a series of ever-better gliders, and in 1891 was able to make flights of 25 meters or more routinely. He rigorously documented his work, including photographs, and for this reason is one of the best known of the early pioneers. He also promoted the idea of "jumping before you fly", suggesting that researchers should start with gliders and work their way up, instead of simply designing a powered machine on paper and hoping it would work. His type of aircraft is now known as a hang glider.

Lilienthal knew that once an engine was attached to the plane it would be nearly impossible to further study the laws of aviation. The finding and describing of many of those laws were his greatest heritage to his successors, as they were able to construct their planes accordingly and thereby save themselves years of trial and error.

By the time of his death in 1896 he had made 2500 flights on a number of designs, when a gust of wind broke the wing of his latest design, causing him to fall from a height of roughly 56 ft (17 m), fracturing his spine. He died the next day, with his last words being "small sacrifices must be made". Lilienthal had been working on small engines suitable for powering his designs at the time of his death.

Picking up where Lilienthal left off, Octave Chanute took up aircraft design after an early retirement, and funded the development of several gliders. In the summer of 1896 his troop flew several of their designs many times at Miller Beach, Indiana, eventually deciding that the best was a biplane design that looks surprisingly modern. Like Lilienthal, he heavily documented his work while photographing it, and was busy corresponding with like-minded hobbyists around the world. Chanute was particularly interested in solving the problem of natural stability of the aircraft in flight, one which birds corrected for by instinct, but one that humans would have to do manually. The most disconcerting problem was longitudinal stability, because as the angle of attack of a wing increased, the center of pressure moved forward and made the angle increase more. Without immediate correction, the craft would pitch up and stall.
Throughout this period, a number of attempts were made to produce a true powered aircraft. However the majority of these efforts were doomed to failure, being designed by hobbyists who did not have a full understanding of the problems being discussed by Lilienthal and Chanute.

In France Clément Ader successfully launched his steam powered Eole for a short 50 meter flight near Paris in 1890, making it the first self-propelled "long distance" flight in history. After this test he immediately turned to a larger design, which took five years to build. However, this design, the Avion III, was too heavy and was barely able to leave the ground. The plane reportedly managed to fly a distance of 300 meters, at a small height.

In 1884, Alexander Mozhaysky's monoplane design made what is now considered to be a power assisted take off or 'hop' of 60-100 feet (20-30 meters) near Krasnoye Selo, Russia.

Sir Hiram Maxim studied a series of designs in England, eventually building a monstrous 7,000 lb (3,175 kg) design with a wingspan of 105 feet (32 m), powered by two advanced low-weight steam engines which delivered 180 hp (134 kW) each. Maxim built it to study the basic problems of construction and power and it remained without controls, and, realizing that it would be unsafe to fly, he instead had a 1,800 foot (550 m) track constructed for test runs. After a number of test runs working out problems, on July 31, 1894 they started a series of runs at increasing power settings. The first two were successful, with the craft "flying" on the rails. In the afternoon the crew of three fired the boilers to full power, and after reaching over 42 mph (68 km/h) about 600 ft (180 m) down the track the machine produced so much lift it pulled itself free of the track and crashed after flying at low altitudes for about 200 feet (60 m). Declining fortunes left him unable to continue his work until the 1900s, when he was able to test a number of smaller designs powered by gasoline.

Another less successful early experimenter was Samuel Pierpont Langley. After a distinguished career in astronomy and a tenure at the Smithsonian Institution, Langley started a serious investigation into aerodynamics at what is today the University of Pittsburgh. In 1891 he published Experiments in Aerodynamics detailing his research, and then turned to building his designs. On May 6, 1896, Langley's Aerodrome No.5 made the first successful flight of an unpiloted, engine-driven heavier-than-air craft of substantial size. It was launched from a spring-actuated catapult mounted on top of a houseboat on the Potomac River near Quantico, Virginia. Two flights were made that afternoon, one of 1,005 m (3,300 ft) and a second of 700 m (2,300 ft), at a speed of approximately 25 miles per hour.

On November 28, 1896, another successful flight was made with the Aerodrome No.6. This flight was witnessed and photographed by Alexander Graham Bell. It was flown a distance of approximately 1,460 m (4,790 ft).

In the United Kingdom an attempt at heavier-than-air flight was made by the aviation pioneer Percy Pilcher. Pilcher had built several working gliders, The Bat, The Beetle, The Gull and The Hawk, which he flew successfully during the mid to late 1890s. In 1899 he constructed a prototype powered aircraft which, recent research has shown, would have been capable of flight. However, he died in a glider accident before he was able to test it, and his plans were forgotten for many years.


1900 to 1914 (The "Pioneer Era")

Lighter than air
The first aircraft to make routine controlled flights were non-rigid airships (later called "blimps".) The most successful early pioneer of this type of aircraft was the Brazilian Alberto Santos-Dumont. Santos-Dumont effectively combined a balloon with an internal combustion engine. On October 19, 1901 he became world famous when he flew his airship "Number 6" over Paris from the Parc Saint Cloud around the Eiffel Tower and back in under thirty minutes to win the Deutsch de la Meurthe prize. After this triumph in airships, Santos-Dumont would go on to design and build several aircraft. The subsequent controversy surrounding his and others' competing claims with regard to aircraft would come to overshadow and obscure his unparalleled contributions to the development of airships.

At the same time that non-rigid airships were starting to have some success, rigid airships were also becoming more advanced. Indeed, rigid body dirigibles would be far more capable than fixed wing aircraft in terms of pure cargo carrying capacity for decades. Dirigible design and advancement was brought about by the German count, Ferdinand von Zeppelin.

Construction of the first Zeppelin airship began in 1899 in a floating assembly hall on Lake Constance in the Bay of Manzell, Friedrichshafen. This was intended to ease the starting procedure, as the hall could easily be aligned with the wind. The prototype airship LZ 1 (LZ for "Luftschiff Zeppelin") had a length of 128 m, was driven by two 14.2 ps (10.6 kW) Daimler engines and balanced by moving a weight between its two nacelles.

The first Zeppelin flight occurred on July 2, 1900. It lasted for only 18 minutes, as LZ 1 was forced to land on the lake after the winding mechanism for the balancing weight had broken. Upon repair, the technology proved its potential in subsequent flights, beating the 6 m/s velocity record of French airship La France by 3 m/s, but could not yet convince possible investors. It would be several years before the Count was able to raise enough funds for another try.


Langley
On May 6, 1896, Langley's Aerodrome No.5 made the first successful flight of an unpiloted, engine-driven heavier-than-air craft of substantial size. It was launched from a spring-actuated catapult mounted on top of a houseboat on the Potomac River near Quantico, Virginia. Two flights were made that afternoon, one of 1,005 m (3,300 ft) and a second of 700 m (2,300 ft), at a speed of approximately 25 miles per hour. On both occasions, the Aerodrome No.5 landed in the water, as planned, because, in order to save weight, it was not equipped with landing gear.

On November 28, 1896, another successful flight was made with the Aerodrome No.6. This flight was witnessed and photographed by Alexander Graham Bell. It was flown a distance of approximately 1,460 m (4,790 ft). The Aerodrome No.6 was actually Aerodrome No.4 greatly modified. So little remained of the original aircraft that it was given the new designation of Aerodrome No.6.

With the success of the Aerodrome No. 5 and its follow-on No. 6, Langley started looking for funding to build a full-scale man-carrying version of his designs. Spurred by the Spanish-American War, the U.S. government granted him $50,000 to develop a man-carrying flying machine for surveillance. Langley planned on building a scaled-up version known as the Aerodrome A, and started with the smaller Quarter-scale Aerodrome, which flew twice on June 18, 1901, and then again with a newer and more powerful engine in 1903.

With the basic design apparently successfully tested, he then turned to the problem of a suitable engine. He contracted Stephen Balzer to build him one, but was disappointed when it delivered only 8 horsepower (6 kW) instead of 12 hp (9 kW) as he expected. Langley's assistant, Charles M. Manly, then reworked the design into a five-cylinder water-cooled radial that delivered 52 horsepower (39 kW) at 950 rpm, a feat that took years to duplicate. Now with both power and a design, Langley put the two together with great hopes.

To his dismay, the resulting aircraft proved to be too fragile. He had apparently overlooked the effects of minimum gauge, and simply scaling up the original small models resulted in a design that was too heavy to hold itself up. Two launches in late 1903 both ended with the Aerodrome crashing into the water almost immediately after launch.

His attempts to gain further funding failed, and his efforts ended -- only weeks later the Wright brothers successfully flew their aptly-named Flyer.

(Glenn Curtiss made several modifications to the Aerodrome and successfully flew it in 1914 -- the Smithsonian Institution thus continued to boast that Langley's Aerodrome was the first machine "capable of flight".)


Gustave Whitehead
On August 14, 1901, in Fairfield, Connecticut, Whitehead reportedly flew his engine-powered Number 21 800 meters at 15 meters height, according to articles in the Bridgeport Herald, the New York Herald and the Boston Transcript. No photographs were taken, but a sketch of the plane in the air was made by a reporter for the Bridgeport Herald, Dick Howell, who was present in addition to Whitehead helpers and other witnesses. This date precedes the Wright brothers' Kitty Hawk, North Carolina flight by more than two years. Several witnesses have sworn and signed affidavits about many other flights during the summer 1901 before the event described above which was publicized.

For example: "In the summer of 1901 he flew that machine from Howard Avenue East to Wordin Avenue, flying it along the border of a property belonging to a gasworks. As Harworth recalls, after landing the flying machine was merely turned around and a further "leap" was taken back to Howard Avenue." [14] (According to old and modern maps this distance is 200m (600ft).)

The Aeronautical Club of Boston and manufacturer Horsman in New York hired Whitehead as a specialist for hanggliders, aircraft models, kites and motors for flying craft. Whitehead flew short distances in his glider.

According to witness reports, Whitehead had flown about 1 km (half a mile) in Pittsburgh as early as 1899. This flight ended in a crash when Whitehead tried to avoid a collision with a three-storey building by flying over the house and failed. After this crash Whitehead was forbidden any further flying experiments in Pittsburgh. That's why he moved to Bridgeport.

In January 1902, he claimed to have flown 10 km (7 miles) over Long Island Sound in the improved Number 22.

In the 1930s, witnesses gave 15 sworn and signed affidavits, most of them attesting to Whitehead flights; one attests to the flight over the Sound. Two modern replicas of his Number 21 have been flown successfully.


The Wright Brothers
Main article: Wright brothers
Following Lilienthal's principles of jumping before flying, the brothers built and tested a series of kite and glider designs from 1900 to 1902 before attempting to build a powered design. The gliders worked, but not as well as the Wrights had expected based on the experiments and writings of their 19th century predecessors. Their first glider, launched in 1900, had only about half the lift they anticipated. Their second glider, built the following year, performed even more poorly. Rather than giving up, the Wrights constructed their own wind tunnel and created a number of sophisticated devices to measure lift and drag on the 200 wing designs they tested. As a result, the Wrights corrected earlier mistakes in calculations regarding drag and lift, though they missed the effect of Reynolds number (known since 1883), which would have given them an even bigger advantage. Their testing and calculating produced a third glider design, which they flew in 1902. It performed far better than the previous models. In the end, by establishing their rigorous system of designing, wind-tunnel testing of models and flight testing of full-size prototypes, the Wrights not only built a working aircraft but also helped advance the modern science of aeronautical engineering.
The Wrights appear to be the first design team to make serious studied attempts to simultaneously solve the power and control problems. Both problems proved difficult, but they never lost interest. Eventually, they designed and built an engine that could provide the needed power, and solved the control problem through a system known as "wing warping". Although this method was used only briefly during the history of aviation, it worked at the low airspeeds their designs would fly at, and proved to be a key advance, leading directly to modern ailerons. While many aviation pioneers appeared to leave safety largely to chance, the Wrights' design was greatly influenced by the need to teach themselves to fly without unreasonable risk to life and limb, by surviving crashes. This, not lack of power, was the reason for the low speed and for taking off in a head wind. It was also the reason for the rear-heavy design, for the canard, and for the anhedral wings.

According to the Smithsonian and FAI the Wrights made the first sustained, controlled and powered heavier-than-air flight at Kill Devil Hills, North Carolina, a town five miles down the road from Kitty Hawk, North Carolina on December 17, 1903

The first flight by Orville Wright, of 121 feet (37 m) in 12 seconds, was recorded in a famous photograph. In the fourth flight of the same day, Wilbur Wright flew 852 feet (260 m) in 59 seconds. The flights were witnessed by 4 lifesavers and a boy from the village, making them the first public flights and certainly the first well-documented ones.

Wilbur started the fourth and last flight at just about 12 o'clock. The first few hundred feet were up and down, as before, but by the time three hundred feet had been covered, the machine was under much better control. The course for the next four or five hundred feet had but little undulation. However, when out about eight hundred feet the machine began pitching again, and, in one of its darts downward, struck the ground. The distance over the ground was measured to be 852 feet (260 m); the time of the flight was 59 seconds. The frame supporting the front rudder was badly broken, but the main part of the machine was not injured at all. We estimated that the machine could be put in condition for flight again in about a day or two. [15] "Every flight of the aircraft on December 14 and 17 -- under very difficult conditions on the 17th -- ended in a bumpy and unintended "landing"." [16]

"When rebuilding the Flyer III after a severe crash on 14 July 1905, the Wrights made radical changes to the design. They almost doubled the size of the elevator and rudder and moved them about twice the distance from the wings. They added two fixed vertical vanes (called "blinkers") between the elevators, and gave the wings a very slight dihedral. They disconnected the rudder of the rebuilt Flyer III from the wing-warping control, and as in all future aircraft, placed it on a separate control handle. When testing of Flyer III resumed in September the results were almost immediate. The bucking and veering that had hampered Flyers I & II were gone. The minor crashes the Wrights had experienced disappeared. The flights with the redesigned Flyer III started lasting over 20 minutes. Thus Flyer III became a practicable, as well as dependable aircraft, flying solidly for a consistent duration and bringing its pilot back to the starting point safely and landing without damage to itself. On 5 October 1905, Wilbur flew 24 miles (38.9 km) in 39 minutes 23 seconds."

Other early flights
Main article: List of aviation pioneers
At the time, around the years 1900 to 1910, a number of other inventors had made (or claimed to have made) short flights.

Lyman Gilmore also claimed to have achieved success on 15 May, 1902.

In New Zealand, South Canterbury farmer and inventor Richard Pearse constructed a monoplane aircraft that he reputedly flew on March 31 1903.

Karl Jatho from Hanover conducted a short motorized flight in August 1903, just a few months after Pearse. Jatho's wing design and airspeed did not allow his control surfaces to act properly to control the aircraft.

Also in the summer of 1903, eyewitnesses claimed to have seen Preston Watson make his initial flights at Errol, near Dundee in the east of Scotland. Once again, however, lack of photographic or documentary evidence makes the claim difficult to verify. Many claims of flight are complicated by the fact that many early flights were done at such low altitude that they did not clear the ground effect, and by the complexities involved in the differences between unpowered and powered aircraft.

The Wright Brothers conducted numerous additional flights (about 150) in 1904 and 1905 from Huffman Prairie in Dayton, Ohio and invited friends and relatives. Newspaper reporters did not pay attention after seeing an unsuccessful flight attempt in May 1904.

Public exhibitions of high altitude flights were made by Daniel Maloney in the John Montgomery tandem-wing glider in March and April of 1905 in the Santa Clara, California area. These flights received national media attention and demonstrated superior control of the design, with launches as high as 4,000 feet and landings made at predetermined locations.
Alberto Santos-Dumont made a public flight in Europe on September 13, 1906 in Paris. He used a canard elevator and pronounced wing dihedral, and covered a distance of 221 m (725 ft). Since the plane did not need headwinds or catapults to take off, this flight is considered by some as the first true powered flight. Also, since the earlier attempts of Pearse, Jatho, Watson, and the Wright brothers received less attention from the popular press than Santos-Dumont's flight, its importance to society, especially in Europe and Brazil, is often considered to be greater despite occurring some years later.

Two English inventors Henry Farman and John William Dunne were also working separately on powered flying machines. In January 1908, Farman won the Grand Prix d'Aviation with a machine which flew for 1 km, though by this time many longer flights had already been done. For example, the Wright Brothers had made flights over 39 km long by 1905. Dunne's early work was sponsored by the British military, and tested in great secrecy in Glen Tilt in the Scottish Highlands. His best early design, the D4, flew in December 1908 near Blair Atholl in Perthshire. Dunne's main contribution to early aviation was stability, which was a key problem with the planes designed by the Wright brothers and Samuel Cody.

On May 14, 1908 the Wright Brothers made what is accepted to be the first two-person aircraft flight, with Charlie Furnas as a passenger.

On 8 July 1908, Thérèse Peltier became the first woman to fly as a passenger in an airplane when she made a flight of 656 feet with Léon Delagrange in Milan, Italy.

Thomas Selfridge became the first person killed in a powered aircraft on September 17, 1908, when Orville crashed his two-passenger plane during military tests at Fort Myer in Virginia.

In late 1908, Mrs Hart O. Berg became the first American woman to fly as a passenger in an airplane when she flew with Wilbur Wright in Le Mans, France.

On 25 July 1909 Louis Blériot flew the Blériot XI monoplane across the English Channel winning the Daily Mail aviation prize. His flight from Calais to Dover lasted 37 minutes.

On 22 October 1909 Raymonde de Laroche became the first woman to pilot and solo in a powered heavier than air craft. She was also the first woman in the world to receive a pilot's licence.

Controversy over who gets credit for invention of the aircraft has been fuelled by Pearse's and Jatho's essentially non-existent efforts to inform the popular press, by the Wrights' secrecy while their patent was prepared, by the pride of nations, and by the number of firsts made possible by the basic invention. For example, the Romanian engineer Traian Vuia (1872 - 1950) has also been claimed to have built the first self-propelled, heavier-than-air aircraft able to take off autonomously, without a headwind and entirely driven by its own power. Vuia piloted the aircraft he designed and built on March 18, 1906, at Montesson, near Paris. None of his flights were longer than 100 feet (30 m) in length. In comparison, in October 1905, the Wright brothers had a sustained flight of 39 minutes and 24.5 miles (39 km), circling over Huffman Prairie.


Helicopter
In 1877 Enrico Forlanini developed an early unmanned helicopter powered by a steam engine. It was the first of its type that rose to a height of 13 meters, where it remained for some 20 seconds, after a vertical take-off from a park in Milan.
The first manned helicopter known to have risen off the ground took place in 1907 (Cornu, France) though the first practical helicopter was the Focke FA-61 (Germany, 1936).


Seaplane
The first seaplane was invented in March 1910 by the French engineer Henri Fabre. Its name was Le Canard ('the duck'), and took off from the water and flew 800 meters on its first flight on March 28, 1910. These experiments were closely followed by the aircraft pioneers Gabriel and Charles Voisin, who purchased several of the Fabre floats and fitted them to their Canard Voisin airplane. In October 1910, the Canard Voisin became the first seaplane to fly over the river Seine, and in March 1912, the first seaplane to be used militarily from a seaplane carrier, La Foudre ('the lightning').


1914 - 1918: World War I
Main article: World War I Aviation
Almost as soon as they were invented, planes were drafted for military service. The first country to use planes for military purposes was Bulgaria, whose planes attacked and reconnoitred the Ottoman positions during the First Balkan War 1912-13. The first war to see major use of planes in offensive, defensive and reconnaissance capabilities was World War I. The Allies and Central Powers both used planes extensively.

While the concept of using the aeroplane as a weapon of war was generally laughed at before World War I, the idea of using it for photography was one that was not lost on any of the major forces. All of the major forces in Europe had light aircraft, typically derived from pre-war sporting designs, attached to their reconnaissance departments. While early efforts were hampered by the light loads carried, improved two-seat designs soon appeared that were entirely practical.

It was not long before aircraft were shooting at each other, but the lack of any sort of steady point for the gun was a problem. The French solved this problem when, in late 1914, Roland Garros attached a fixed machine gun to the front of his plane, but it was Adolphe Pegoud who would become known as the first "ace", getting credit for five victories, before also becoming the first ace to die in action.

Aviators were styled as modern day knights, doing individual combat with their enemies. Several pilots became famous for their air to air combats, the most well-known is Manfred von Richthofen, better known as the Red Baron, who shot down 80 planes in air to air combat with several different planes, the most celebrated of which was the Fokker Dr.I. On the allied side, René Paul Fonck is credited with the most victories at 75. For the Americans, the most successful ace was Eddie Rickenbacker with 26 victories.
1918 - 1939 (The "Golden Age")
The years between World War I and World War II saw a large advancement in aircraft technology.

Aircraft evolved from being constructed of mostly wood and canvas to being constructed almost entirely of aluminium. Engine development proceeded apace, with engines moving from in-line water cooled gasoline engines to rotary and radial air cooled engines, with a commensurate increase in propulsive power. Pushing all of this forward were prizes for distance and speed records. For example Charles Lindbergh took the Orteig Prize of $25,000 for his solo non-stop crossing of the Atlantic, the first person to achieve this, although not the first to carry out a non-stop crossing. That was achieved eight years earlier when Captain John Alcock and Lieutenant Arthur Brown co-piloted a Vickers Vimy nonstop from St. John's, Newfoundland to Clifden, Ireland on June 14, 1919, winning the £10,000 ($50,000) Northcliffe prize.

After WWI experienced fighter pilots were eager to show off their new skills. Many American pilots became barnstormers, flying into small towns across the country and showing off their flying abilities, as well as taking paying passengers for rides. Eventually the barnstormers grouped into more organized displays. Air shows sprang up around the country, with air races, acrobatic stunts, and feats of air superiority. The air races drove engine and airframe development - the Schneider Trophy for example led to a series of ever faster and sleeker monoplane designs culminating in the Supermarine S.6B, a direct forerunner of the Spitfire. With pilots competing for cash prizes, there was an incentive to go faster. Amelia Earhart was perhaps the most famous of those on the barnstorming/air show circuit. She was also the first female pilot to achieve records such as crossing of the Atlantic and English channels.

The first lighter-than-air crossings of the Atlantic were made by airship in July 1919 by His Majesty's Airship R34 and crew when they flew from East Lothian, Scotland to Long Island, New York and then back to Pulham, England. By 1929, airship technology had advanced to the point that the first round-the-world flight was completed by the Graf Zeppelin in September and in October, the same aircraft inaugurated the first commercial transatlantic service. However the age of the dirigible ended in 1937 with the terrible fire aboard the Zeppelin Hindenburg. After the now famous footage of the hydrogen-filled Hindenburg burning and crashing on the Lakehurst, New Jersey, landing field, people stopped using airships, despite the fact that most people on board survived. The Hindenburg, combined with the Winged Foot Express disaster that occurred on 21 July, 1919, in Chicago, Illinois, in which 12 civilians died, started the demise of the airship. Flammable gas dirigibles did not burn and crash often, but when they did crash they caused a disproportionate amount of destruction to the crash zone compared with the aeroplanes of the time. It was more shock value than the number of fatalities that caused the retirement of the world's airships. This may not have been the case had helium been available to the Zeppelin company. The United States, holder of the world's only reserves of helium at the time, was loathe to supply it to the company, which was based in Germany.

In 1929 Jimmy Doolittle developed instrument flight.
In the 1930s development of the jet engine began in Germany and in England. In England Frank Whittle patented a design for a jet engine in 1930 and began developing an engine towards the end of the decade. In Germany Hans von Ohain patented his version of a jet engine in 1936 and began developing a similar engine. The two men were unaware of each others work, and both Germany and Britain had developed jet aircraft by the end of World War II.


1939 - 1945: World War II
World War II saw a drastic increase in the pace of aircraft development and production. All countries involved in the war stepped up development and production of aircraft and flight based weapon delivery systems, such as the first long range bomber. Fighters were critical to the success of the heavy bombers, allowing much lower losses than would have been the case without fighter protection.

World War II saw a number of technological advances that were remarkable for its day: The first functional jetplane was the Heinkel He 178 (Germany), flown by Erich Warsitz in 1939 (a Coanda-1910 is said to have done a short involuntary flight on 16 December 1910). The first cruise missile (V-1), the first ballistic missile (V-2), and the first manned rocket Bachem Ba 349 were also developed by Germany. However, the small number of Jet fighters did not have significant impact, the V-1 was not very effective as it was slow and vulnerable, and the V-2 could not hit targets precisely enough.

1945 - 1991: The Cold War
Commercial Aviation took hold after World War II using mostly ex-military aircraft in the business of transporting people and goods. Within a few years many companies existed, with routes that criss-crossed North America, Europe and other parts of the world. This was accelerated due to the glut of heavy and super-heavy bomber airframes like the B-29 and Lancaster that could easily be converted into commercial aircraft. The DC-3 also made for easier and longer commercial flights. The first North American commercial jet airliner to fly was the Avro C102 Jetliner in September 1949, shortly after the British Comet. By 1952, the British state airline BOAC had introduced the De Havilland Comet into scheduled service. While a technical achievement, the plane suffered a series of highly public failures, as the shape of the windows led to cracks due to metal fatigue. The fatigue was caused by cycles of pressurization and depressurization of the cabin, and eventually led to catastrophic failure of the plane's fuselage. By the time the problems were overcome, other jet airliner designs had already taken to the skies. USSR's Aeroflot became the first airline in the world to operate sustained regular jet services on 15 September 1956 with the Tupolev Tu-104. Boeing 707, which established new levels of comfort, safety and passenger expectations, ushered in the age of mass commercial air travel as we enjoy it today.

Even with the end of World War II, there was still a need for advancement in aircraft and rocket technology. Not long after the war ended, in October of 1947, Chuck Yeager took the rocket powered Bell X-1 past the speed of sound. Although anecdotal evidence exists that some fighter pilots may have done so while divebombing ground targets during the war, this is the first controlled, level flight to cross the sound barrier. Further barriers of distance were eliminated in 1948 and 1952 as the first jet crossing of the Atlantic occurred and the first nonstop flight to Australia occurred.

During the 1950s, a new age of military aviation history would be written. When the Soviet Union developed long-range bombers that could deliver nuclear weapons to North America and Europe, Western countries responded with interceptor aircraft that could engage and destroy the bombers before they reached their destination. The "minister-of-everything" C.D. Howe in the Canadian government, was the key proponent of the Avro Arrow, designed as a high-speed interceptor, reputedly the fastest aircraft in its time. However, by 1955, most Western countries agreed that the interceptor age was replaced by guided missile age. Consequently, the Avro Arrow project was eventually cancelled in 1959 under Prime Minister John Diefenbaker. See Avro Arrow for more details.

In 1961, the sky was no longer the limit for manned flight, as Yuri Gagarin orbited once around the planet within 108 minutes, and then used the descent module of Vostok I to safely reenter the atmosphere and reduce speed from Mach 25 using friction and converting velocity into heat. This action further heated up the space race that had started in 1957 with the launch of Sputnik 1 by the Soviet Union. The United States responded by launching Alan Shepard into space on a suborbital flight in a Mercury space capsule. With the launch of the Alouette I in 1963, Canada became the third country to send a satellite in space. The Space race between the United States and the Soviet Union would ultimately lead to the current pinnacle of human flight, the landing of men on the moon in 1969.

This historic achievement in space was not the only progress made in aviation at this time however. In 1967, the X-15 set the air speed record for an aircraft at 4,534 mph or Mach 6.1 (7,297 km/h). Aside from vehicles designed to fly in outer space, this record still stands as the air speed record for powered flight
The same year that Neil Armstrong and Buzz Aldrin set foot on the moon, 1969, Boeing came out with its vision for the future of air travel, unveiling the Boeing 747 for the first time. This plane is still one of the largest aircraft ever to fly, and it carries millions of passengers each year. Commercial aviation progressed even further in 1975, as Soviet Aeroflot started regular service on Tu-144 — the first supersonic passenger plane, and in 1976, as British Airways inaugurated supersonic service across the Atlantic, courtesy of the Concorde. A few years earlier the SR-71 Blackbird had set the record for crossing the Atlantic in under 2 hours, and Concorde followed in its footsteps with passengers in tow.

The last quarter of the 20th century saw a slowing of the pace of advancement seen in the first three quarters of the century. No longer was revolutionary progress made in flight speeds, distances and technology. This part of the century saw the steady improvement of flight avionics, and a few minor milestones in flight progress.

For example, in 1979 the Gossamer Albatross became the first human powered aircraft to cross the English channel. This achievement finally saw the realization of centuries of dreams of human flight, but this has not had any significant impact on either commercial or military aviation. In 1981, the Space Shuttle made its first orbital flight, proving that a large rocket ship can take off into space, provide a pressurised life support system for several days, reenter the atmosphere at orbital speed, precision glide to a runway and land like a plane. In 1986 Dick Rutan and Jeana Yeager flew an aircraft around the world unrefuelled, and without landing. In 1999 Bertrand Piccard became the first person to circle the earth in a balloon. By the end of the 20th Century there were no major or minor accomplishments left to be made in subsonic aviation. Focus was turning to the ultimate conquest of space and flight at faster than the speed of sound. The ANSARI X PRIZE inspired entrepreneurs and space enthusiasts to build their own rocket ships to fly faster than sound and climb into the lowest reaches of space.


2001-Future
In the beginning of the 21st century, subsonic aviation focused on eliminating the pilot in favor of remotely operated or completely autonomous vehicles. Several Unmanned aerial vehicles or UAVs have been developed. In April 2001 the unmanned aircraft Global Hawk flew from Edwards AFB in the US to Australia non-stop and unrefuelled. This is the longest point-to-point flight ever undertaken by an unmanned aircraft, and took 23 hours and 23 minutes. In October 2003 the first totally autonomous flight across the Atlantic by a computer-controlled model aircraft occurred.

In commercial aviation, the early 21st century saw the end of an era with the retirement of Concorde. Supersonic flight was not very commercially viable, as the planes were required to fly over the oceans if they wanted to break the sound barrier. Concorde also was fuel hungry and could carry a limited amount of passengers due to its highly streamlined design. Nevertherless, it seems to have made a significant operating profit for British Airways.

Despite this setback, and the general slowing of progress, it is generally agreed that the 21st century will be a bright one for aviation. Planes and rockets offer unique capabilities in terms of speed and carrying capacity that should not be underestimated. As long as there is a need for people to get to places quickly, there will be a need for aviation.

Charles Lindbergh

Charles Lindbergh
From Wikipedia, the free encyclopedia

Born 4 February 1902(1902-02-04)
Detroit, Michigan
Died 26 August 1974 (aged 72)
Kipahulu, Maui, Hawaii

Occupation
Aviator
author

Spouse Anne Morrow Lindbergh
Children Charles Augustus Lindbergh II, Jon Lindbergh, Land Morrow Lindbergh, Anne Lindbergh, Scott Lindbergh and Reeve Lindbergh (by wife Anne Morrow Lindbergh); Dyrk Hesshaimer, Astrid Hesshaimer, and David Hesshaimer (by Brigitte Hesshaimer); Vago Hesshaimer and Christoph Hesshaimer (by Marietta Hesshaimer).
Parents Charles August Lindbergh and Evangeline Lodge Land Lindbergh
Charles Augustus Lindbergh (4 February 1902 – 26 August 1974) known as "Lucky Lindy" and "The Lone Eagle", was an American pilot famous for the first solo, non-stop flight across the Atlantic, from Roosevelt Field, Long Island to Paris in 1927 in the Spirit of St. Louis. In the ensuing deluge of fame, Lindbergh became the world's best-known aviator.

In the years prior to World War II, Lindbergh was a noted isolationist, and a leader in the America First Committee to keep the U.S. out of the coming war. Nevertheless, he flew combat missions in the Pacific Theater as a consultant. In later years, Lindbergh took an active role in the environmental movement.

Charles Lindbergh is a recipient of the Medal of Honor.


Early years
Charles Augustus Lindbergh was born in Detroit, Michigan, on 4 February 1902. He spent summers on a farm near Little Falls, Minnesota.

Lindbergh's father, Charles August Lindbergh, a Swedish immigrant, was a lawyer and later a U.S. Congressman who opposed the entry of the U.S. into World War I. His mother Evangeline Lodge Land Lindbergh, of English, French, and Irish descent, was a teacher at Cass Technical High School and later at Little Falls High School. Lindbergh, for a short time, attended Redondo Union High School in Redondo Beach, California. He graduated from Little Falls, Minnesota High School in 1918.


Introduction to aviation
Early on, Lindbergh expressed an interest in machinery beginning with his family's Saxon Six, later his own Excelsior motorbike and, finally, aircraft. In 1922, he quit the mechanical engineering program at the University of Wisconsin-Madison, joined a pilot and mechanics training program with Nebraska Aircraft, bought his own aircraft, a World War I-surplus Curtiss JN-4, "Jenny" and became a barnstormer, the "Daredevil Lindbergh."[3] In 1924, he started training as a pilot with the Army Air Service. During this time he also held a job as an airline mechanic in Billings, Montana, working at the Billings Municipal Airport (later renamed Billings Logan International Airport).

After finishing first in his pilot training class, Lindbergh took his first job as the chief pilot of an airmail route operated by Robertson Aircraft Co. of Lambert Field in St. Louis, Missouri. He flew the mail in a de Havilland DH-4 biplane to Springfield, Illinois, Peoria and Chicago. During his tenure on the mail route, he was renowned for delivering the mail under any circumstances. After a crash, he even salvaged bags of mail from his burning aircraft and immediately phoned Alexander Varney, Peoria's airport manager, to advise him to send a truck.

In April 1923, while visiting friends in Lake Village, Arkansas, Lindbergh made his first nighttime flight over Lake Village and Lake Chicot.

First non-stop flight from New York to Paris
The Orteig Prize, a US$25,000 prize offered in 1919 by New York hotelier Raymond Orteig, a Frenchman, for the first non-stop flight from New York City to Paris spurred a great amount of interest worldwide. Either an eastbound flight from New York or a westbound flight from Paris would qualify. The first challengers were French war heroes Captain Charles Nungesser and his navigator Raymond Coli. They departed on 8 May 1927 on a westbound flight in the Levasseur PL 8, L'Oiseau Blanc. Their last contact was when they crossed the coast of Ireland. Other teams including famed World War I fighter ace René Fonck, Clarence Chamberlin, who made the second non-stop flight across the Atlantic two weeks after Lindbergh, landing in Eisleben, Germany near Berlin, and Admiral Richard E. Byrd, were also in the race to claim the prize. Noel Davis and Stanton H. Wooster were killed in a crash, and Charles N. Clavier and Jacob Islaroff were burned to death at Roosevelt Airfield when Fonck’s overloaded Sikorsky aircraft nosed over on takeoff.

Lindbergh gained sudden great international fame as the first pilot to fly solo across the Atlantic Ocean. He flew from Roosevelt Airfield, Garden City, New York on 20 May, arriving at Paris - Le Bourget Airport in 33.5 hours on 21 May. His plane, the single-engine aircraft, Spirit of St. Louis, was designed by Donald Hall and custom built by Ryan Aeronautical Company of San Diego, California. Gaston Doumergue, the President of France bestowed on him the French Légion d'honneur and on his arrival back in the United States, a fleet of warships and aircraft escorted him to Washington, D.C. where President Calvin Coolidge awarded him the Distinguished Flying Cross on 11 June 1927. Lindbergh's grandson Erik Lindbergh repeated this trip 75 years later in 2002 in 17 hours 17 minutes.

Lindbergh's accomplishment won him the Orteig Prize; more significant than the prize money was the acclaim that resulted from his daring flight. A ticker-tape parade was held for him down 5th Avenue in New York City on 13 June 1927.

His public stature following this flight was such that he became an important voice on behalf of aviation activities, including the central committee of the National Advisory Committee for Aeronautics in the United States. The massive publicity surrounding him and his flight boosted the aircraft industry and made a skeptical public take air travel seriously. Lindbergh is recognized in aviation for demonstrating and charting polar air-routes, high altitude flying techniques, and increasing aircraft flying range by decreasing fuel consumption. These innovations are the basis of modern intercontinental air travel.

Elinor Smith Sullivan, winner of the 1930 Best Woman Aviator of the Year Award, described the impact Lindbergh had on aviation. Before his flight, she remembers, "people seemed to think we [aviators] were from outer space or something. But after Charles Lindbergh's flight, we could do no wrong. It's hard to describe the impact Lindbergh had on people. Even the first walk on the moon doesn't come close. The twenties was such an innocent time, and people were still so religious – I think they felt like this man was sent by God to do this. And it changed aviation forever because all of a sudden the Wall Streeters were banging on doors looking for airplanes to invest in. We'd been standing on our heads trying to get them to notice us but after Lindbergh, suddenly everyone wanted to fly, and there weren't enough planes to carry them."

Although Lindbergh was the first to fly solo from New York to Paris non-stop, he was not the first aviator to complete a transatlantic heavier-than-air aircraft flight. That had been done first in stages by the crew of the NC-4, in May 1919, although their flying boat broke down and had to be repaired before continuing. The NC-4 flights took 19 days to cross the Atlantic Ocean.

The first truly non-stop transatlantic flight was achieved nearly eight years before by two British flyers, John Alcock and Arthur Whitten Brown in a modified Vickers Vimy IV bomber on 14 June-15 June 1919, departing Lester's Field near St. John's, Newfoundland and arriving at Clifden, Ireland (a shorter route than Lindbergh's). A total of 81 people had flown across the Atlantic prior to Lindbergh. However, his was the first solo, non-stop transatlantic flight.


After his flight, Lindbergh wrote a letter to the director of Longines, describing in detail a watch which would make navigation easier for pilots. The watch was manufactured to his design and is still produced today.

Marriage, children, kidnapping
Lindbergh kidnapping
Anne Morrow Lindbergh was the daughter of diplomat Dwight Morrow. According to a Biography Channel profile on Lindbergh, she was the only woman that he had ever asked out on a date. The couple married on 27 May 1929, and he taught her how to fly and did much of his exploring and charting of air routes with her. They had six children: Charles Augustus Lindbergh III (1930-1932); Jon Morrow Lindbergh (b. 16 August 1932); Land Morrow Lindbergh (b. 1937), who studied anthropology at Stanford University and married Susan Miller in San Diego; Anne Lindbergh (1940-1993); Scott Lindbergh (b. 1942); and Reeve Lindbergh (b. 1945), a writer.

Charles Augustus Lindbergh III, 20 months old, was abducted from the Lindbergh home on 1 March 1932. A nationwide, ten-week search ensued, and ransom negotiations were conducted with the kidnappers. An infant corpse was found on 12 May in Hopewell, New Jersey, just a few miles from the Lindberghs' home, and identified by Lindbergh as his son. More than three years later, a media circus ensued when the man accused of the murder, Bruno Hauptmann, went on trial in Flemington, New Jersey. The Lindberghs grew tired of being in the spotlight and moved to Britain in December 1935, still mourning the loss of their son. Hauptmann maintained his innocence until the end, but he was found guilty and was executed on 3 April 1936.


Pre-war activities
In Europe, during the pre-war period, Lindbergh traveled to Germany several times at the behest of the U.S. military, where he reported on German aviation and the German Air Force (Luftwaffe). Lindbergh was intrigued and stated that Germany had taken a leading role in many aviation developments, including metal construction, low-wing designs, dirigibles, and diesel engines. Lindbergh also undertook a survey of aviation in the Soviet Union in 1938 and reported to the United States military upon his return from each of these trips.

The Lindberghs lived in England and France during the late 1930s in order to find tranquility and avoid the celebrity that followed them everywhere in the United States after the kidnapping trial.

While living in France, Lindbergh worked with Nobel Prize-winning French surgeon Dr. Alexis Carrel, with whom he had collaborated on earlier projects when the latter lived in the United States. In 1930, Lindbergh's sister-in-law developed a fatal heart condition. Lindbergh began to wonder why no one could repair hearts with surgery. He discovered it was because organs could not be kept alive outside the body, and he set about working on a solution to the problem with Carrel. Lindbergh's invention, a glass perfusion pump, was credited with making future heart surgeries possible.[7] The device in this early stage was far from perfected, however. Although perfused organs were said to have survived surprisingly well, all showed progressive degenerative changes within a few days.[8] Carrel also introduced Lindbergh to eugenics and scientific racism; these ideas significantly influenced Lindbergh's later sympathies with fascist politics and American isolationism, which eventually ruined his public reputation in America.[9]

In 1929, Lindbergh became interested in the work of U.S. rocket pioneer Robert Goddard. The following year, Lindbergh helped Goddard secure his first endowment from Daniel Guggenheim, which allowed Goddard to expand his independent research and development. Lindbergh remained a key supporter and advocate of Goddard's work throughout his life.


In 1938, Lindbergh and Carrel collaborated on a book, The Culture of Organs, which summarized their work on perfusion of organs outside the body. Lindbergh and Carrel discussed an artificial heart but it was decades before one was actually built.

In 1938, the American ambassador to Germany, Hugh Wilson, invited Lindbergh to a dinner with Hermann Göring at the American embassy in Berlin. The dinner included diplomats and three of the greatest minds of German aviation, Ernst Heinkel, Adolf Baeumaker and Dr. Willy Messerschmitt. Göring presented Lindbergh with the Commander Cross of the Order of the German Eagle (the Großkreuz des Verdienstordens vom Deutschen Adler) for his services to aviation and particularly for his 1927 flight (Henry Ford received the same award earlier in July). Lindbergh's acceptance of the honor later caused an outcry in the United States. Lindbergh declined to return the medal to the Germans because he claimed that to do so would be "an unnecessary insult" to the German Nazi government. He returned to the United States soon after World War II broke out in Europe.


Munich Crisis
Lindbergh went to Germany at the urgent request of the U.S. military attaché in Berlin, who was charged with learning everything possible about Germany's new warplanes. Thus Lindbergh traveled repeatedly to Germany, touring German aviation facilities, where the Luftwaffe chief tried to convince Lindbergh that the Luftwaffe was far more powerful than it actually was. Lindbergh used his prestige to gain far more knowledge of German warplanes than any other American. As historian Wayne Cole explains:

"Of particular importance were the Junkers Ju 88 and, again, the Messerschmitt Bf 109. With the approval of Goering and Ernst Udet, Lindbergh was the first American permitted to examine the Luftwaffe's newest and best bomber, the Ju 88. And he got the unprecedented opportunity to pilot its finest fighter, the Bf 109. He was highly impressed by both aircraft and knew "of no other pursuit plane which combines simplicity of construction with such excellent performance characteristics" as the Bf 109. In his visits to Germany from 1936 through 1938, Colonel Lindbergh closely inspected all the types of military aircraft that Germany was to use in 1939 and 1940. The Bf 109 and Ju 88 were front line German combat planes throughout World War II. And Lindbergh's findings about those various planes found their way into American air intelligence reports to Washington long before the European war began."

At the urging of U.S. Ambassador Joseph Kennedy, Lindbergh wrote a secret memo for the British arguing that if England and France attempted to stop German dictator Adolf Hitler's aggression, it would be military suicide. Some military historians argue that Lindbergh was basically accurate and that his warnings helped save Britain from likely defeat in 1938. Others say that his actions were beneficial to the Third Reich's war effort. There is a case for both of these arguments, since Lindbergh favored a war between Germany and Russia, but deplored the rivalry between Germany and Britain. In Charles A. Lindbergh and the Battle against American Intervention in World War II, Cole explains how Lindbergh was dismayed that pacifism in France had already left that country without a sufficient military and possibly already doomed by 1938, and that Britain had an outdated military still focused on naval power instead of an updated air arsenal to deter the Luftwaffe and force Hitler to turn his ambitions eastward toward a war against "Asiatic Communism". There is some controversy as to how accurate his alarmism concerning the Luftwaffe was, but Cole reports that the consensus among British and American officials was that it was slightly exaggerated but nevertheless badly needed. Lindbergh saw no contradiction between his advocacy of stronger American and British armed forces and diplomatic appeasement of Nazi Germany. "Our civilization depends on peace among Western nations," he wrote in a controversial 1939 Reader's Digest article, "and therefore on united strength, for Peace is a virgin who dare not show her face without Strength, her father, for protection."


Political allegations against Lindbergh
Lindbergh was suspected of being a Nazi sympathizer because of his numerous scientific expeditions to Nazi Germany, combined with a belief in eugenics. President Franklin Delano Roosevelt considered him a Nazi and banned him from rejoining the military. Lindbergh's subsequent combat missions as a civilian consultant restored his reputation after the public found out about them, but only to an extent. However, his Pulitzer Prize-winning biographer, A. Scott Berg, contends that Lindbergh was not so much a supporter of the Nazi regime as someone so stubborn in his convictions and relatively inexperienced in political maneuvering that he easily allowed rivals to portray him as one. Lindbergh's receipt of the German medal was approved without objection by the American embassy; the war had not yet begun in Europe. Indeed, the award did not cause controversy until the war began and Lindbergh returned to the United States in 1939 to spread his message of non-intervention.

A. Scott Berg similarly contends that Lindbergh's views were commonplace in the United States in the pre-World War II era. Lindbergh's support for the America First Committee was representative of the sentiments of a number of American people. His anti-Communism resonated deeply with many Americans. Eugenics and Nordicism enjoyed much social acceptance, and other notable enthusiasts of such ideas included Theodore Roosevelt, Winston Churchill and George S. Patton. Lindbergh's political views were complex, and revealed both consistencies and inconsistencies with those of the Nazis. For instance, Lindbergh avowed a belief in American democracy.However, he clearly stated elsewhere that he believed the survival of the white race was more important than the survival of democracy in Europe: "Our bond with Europe is one of race and not of political ideology," he declared. He had, however, a relatively positive attitude toward blacks (something that was scheduled to be fully revealed in an undelivered speech interrupted by the events that followed the bombing of Pearl Harbor). Critics have noticed an apparent influence of German philosopher Oswald Spengler's ideas on Lindbergh's thinking. Controversial and widely read throughout Western World during the interwar era, Spengler was conservative and authoritarian, but eventually fell out of favor with the Nazis because he did not wholly subscribe to their theories of racial purity.

Lindbergh's detractors created propaganda pamphlets attempting to tie him to alleged Nazi intrigue, pointing out that his efforts were praised in Nazi Germany and including quotations such as "Racial strength is vital– politics, a luxury." They also included pictures of him using the stiff-armed Bellamy salute (a hand gesture described by Francis Bellamy to accompany his Pledge of Allegiance to the flag of the United States). Berg explains that interventionist propagandists photographed Lindbergh and other America Firsters using this salute from an angle that did not show the American flag, so that it would be indistinguishable to observers from the Hitler salute.

Although Lindbergh was labeled "anti-Semitic" in some quarters for his admonishment of Jewish leaders who favored American involvement in foreign wars, he respected and sympathized with the Jewish people. In his Sept 11, 1941 non-interventionist speech in Des Moines, Iowa, Lindbergh declared, "I am not attacking either the Jewish or the British people. Both races, I admire." Lindbergh was ultimately critical of Nazi Germany's treatment of Jews. He said in 1941 that "No person with a sense of dignity of mankind can condone" such treatment.He did not, however, think that America had any business attacking Germany and believed in upholding the Monroe Doctrine, which his interventionist rivals felt was outdated. He also feared that destroying a powerful European nation would lead to the downfall of Western Civilization and a rise in Communist supremacy over Europe.

Much of his position was because he considered Russia to be a "semi-Asiatic" rather than European country compared to Germany, and because he found Communism to be an ideology that would destroy the West's "racial strength" and eventually replace everyone of European descent with "a pressing sea of Yellow, Black, and Brown". The latter belief was more important and consistent than the former, since he saw Russia as a natural barrier to the rising East Asian powers. He believed that race was directly correlated to national success and non-whites were generally mentally inferior. Lindbergh admired specific elements from European nations, such as "the German genius for science and organization, the English genius for government and commerce, the French genius for living and the understanding of life". He believed that "in America they can be blended to form the greatest genius of all". His interrupted plan to voice his opposition to the Jim Crow laws was possibly inspired by his belief in black "sensate superiority" as well as an opportunity to expose what he saw as FDR's hypocrisy. As an advocate of political realism and a cultural pessimist, he may have also felt that state-enforced racial segregation had become untenable and counterproductive. His message was popular throughout many Northern communities and especially well-received in the Midwest, while the American South was Anglophilic and supported a pro-British foreign policy. Lindbergh considered Hitler a fanatic even before the details of the Holocaust reached him, but he openly stated that, if he had to choose, he would rather see his country allied with Nazi Germany than Soviet Russia. (He preferred "Nordic" cultures, but he also believed that Russia would one day be a valuable ally against potential aggression from East Asia after Soviet Communism was defeated.

The American Axis, written by Holocaust researcher and investigative journalist Max Wallace, takes a harsh view of Lindbergh's pre-war actions, agreeing with Franklin Roosevelt's assessment that Lindbergh was "pro-Nazi". However, Wallace finds that the Roosevelt Administration's accusations of dual loyalty or treason are unsubstantiated. Wallace considers Lindbergh a well-intentioned but bigoted and misguided sympathizer of the Nazis whose career as the leader of the isolationist movement had a destructive impact on Jewish people. In his 1999 biography of Lindbergh, A. Scott Berg criticizes Lindbergh's anti-Semitic beliefs but distinguishes between what Berg considers Lindbergh's paranoia about the intentions of most American Jews and the virulent anti-Semitism of the Nazis. Berg also finds that Lindbergh believed in a voluntary rather than compulsory eugenics program but takes his subject to task for basing his view of the war on his "xenophobic thinking" and his assumption that Hitler was not as dangerous as a "Genghis Khan or Xerxes marching against our Western nations" because the Nazi leader was a European nationalist rather than a Communist or "some Asiatic intruder."

The same year that Berg's Pulitzer Prize winning bestseller Lindbergh was published, a book appeared by Pat Buchanan entitled A Republic, Not An Empire: Reclaiming America's Destiny. The book portrays Lindbergh and other pre-war isolationists as American patriots, who were smeared by interventionists during the months leading up to Pearl Harbor. Buchanan suggests that the backlash against Lindbergh highlights "the explosiveness of mixing ethnic politics with foreign policy". The views expressed in the book caused considerable controversy that eventually led to Buchanan's departure from the Republican Party.

Lindbergh had always preached military strength and alertness. He believed that a strong defensive war machine, as well as his views about race, would make America an impenetrable fortress and defend the Western Hemisphere from an attack by foreign powers, and that this was the U.S. military's sole purpose.
Many acknowledge that Lindbergh helped keep American public opinion isolationist until 1941 by advancing the movement to keep America out of the war for as long as possible. At the same time, some praise Lindbergh for his prediction that an Iron Curtain would descend upon Europe; many of the predictions which Lindbergh made about the war came before Hitler violated his non-aggression pact with Stalin and launched Operation Barbarossa. Berg reveals that, while the attack on Pearl Harbor came as a shock to Lindbergh, he did predict that America's "wavering policy in the Philippines" would invite a bloody war there, and, in one speech, he warned that "we should either fortify these islands adequately, or get out of them entirely". Cole, Wallace, and Buchanan all believe that Lindbergh was highly influential in ensuring that Hitler's war machine would advance toward the Eastern Front and inflict the most devastation there.

However, it should be noted that, as the most prominent spokesman of the America First Committee, he fought the Lend-Lease Act and the Atlantic Charter. Had the Lead-Lease Act not been passed, as well as the Destroyers for Bases Agreement, Britain might not have survived, possibly leading to Axis victory.[citation needed]


Outbreak of war
As World War II began in Europe, Lindbergh became a prominent speaker in favor of non-intervention, going so far as to recommend that the United States negotiate a neutrality pact with Germany during his 23 January 1941 testimony before Congress. He joined the antiwar America First Committee and soon became its most prominent public spokesman, speaking to overflow crowds in Madison Square Garden in New York City and Soldier Field in Chicago.

In a speech at an America First rally on 11 September 1941 in Des Moines entitled "Who Are the War Agitators?" Lindbergh claimed that the three groups who had been "pressing this country toward war [were] the British, the Jewish and the Roosevelt Administration" and complained about what he insisted was the Jewish People's "large ownership and influence in our motion pictures, our press, our radio and our government." Although he made clear his opposition to German anti-Semitism, stating that "No person with a sense of the dignity of mankind can condone the persecution of the Jewish race in Germany," other comments seemed to suggest that he believed that Jews should expect trouble for supporting the war: "Instead of agitating for war, the Jewish groups in this country should be opposing it in every possible way for they will be among the first to feel its consequences. Tolerance is a virtue that depends upon peace and strength. History shows that it cannot survive war and devastation".

Lindbergh revealed a nativist xenophobia in an expurgated portion of his published diaries: “We must limit to a reasonable amount the Jewish influence… Whenever the Jewish percentage of total population becomes too high, a reaction seems to invariably occur. It is too bad because a few Jews of the right type are, I believe, an asset to any country.” His reaction to Kristallnacht was entrusted to his diary: "I do not understand these riots on the part of the Germans," he wrote. "It seems so contrary to their sense of order and intelligence. They have undoubtedly had a difficult 'Jewish problem,' but why is it necessary to handle it so unreasonably?"[citation needed]

There was widespread negative reaction to the speech. Lindbergh was forced to defend and clarify his comments by noting again that he was not anti-Semitic, but he did not back away from his statement. Lindbergh resigned his commission in the U.S. Army Air Corps when President Roosevelt openly questioned his loyalty (which did severe damage to his reputation at the time). After the attack on Pearl Harbor in 1941, Lindbergh attempted to return to the Army Air Corps, but was denied when several of Roosevelt's cabinet secretaries registered objections.

Lindbergh said: "I am not attacking the Jewish people. But I am saying that the leaders of both the British and the Jewish races, for reasons which are as understandable from their viewpoint as they are inadvisable from ours, for reasons which are not American, wish to involve us in the war."


World War II
Charles Lindbergh went on to assist with the war effort by serving as a civilian consultant to aviation companies, beginning with Ford in 1942, working at the Willow Run B-24 production line. Later in 1943, he joined United Aircraft as an engineering consultant, devoting most of his time to its Chance-Vought Division. As a technical advisor with Ford, he was deeply involved in trouble-shooting early problems encountered in B-24 production. As B-24 production smoothed out, he devoted more time to Chance-Vought. The following year, he persuaded United Aircraft to designate him a technical representative in the Pacific War to study aircraft performances under combat conditions. He showed Marine F4U pilots how to take off with twice the bomb load that the aircraft was rated for and on 21 May 1944 he flew his first combat mission. It was with VMF-222 on a strafing run near the Japanese garrison of Rabaul.

In his six months in the Pacific in 1944, Lindbergh took part in fighter bomber raids on Japanese positions, flying about 50 combat missions (again as a civilian). His innovations in the use of P-38s impressed a supportive Gen. Douglas MacArthur.[35] Despite the long range exhibited by the P-38 Lightning leading to missions such as the one that killed Admiral Yamamoto, Lindbergh's contributions included engine-leaning techniques that he introduced to P-38 Lightning pilots. These techniques greatly improved fuel usage while cruising, enabling the aircraft to fly even longer-range missions. On 28 July 1944 during a P-38 bomber escort mission with the 475th Fighter Group, Fifth Air Force, in the Ceram area, Lindbergh is credited with shooting down a Sonia observation plane piloted by Captain Saburo Shimada, Commanding Officer of the 73rd Independent Chutai.[36][34] The U.S. Marine and Army Air Force pilots who served with Lindbergh admired and respected him, praising his courage and defending his patriotism.


Later life

After World War II he lived quietly in Connecticut as a consultant both to the chief of staff of the U.S. Air Force and to Pan American World Airways. With most of Eastern Europe having fallen under Communist control, Lindbergh believed most of his pre-war assessments had been correct all along. But Berg reports that after witnessing the defeat of Germany and the horrors of the Holocaust firsthand shortly after his service in the Pacific, "he knew the American public no longer gave a hoot about his opinions." His 1953 book The Spirit of St. Louis, recounting his non-stop transatlantic flight, won the Pulitzer Prize in 1954. Dwight D. Eisenhower restored Lindbergh's assignment with the Army Air Corps and made him a Brigadier General in 1954. In that year, he served on the Congressional advisory panel set up to establish the site of the United States Air Force Academy. In December 1968, he visited the crew of Apollo 8 on the eve of the first manned spaceflight to leave earth orbit.


Children from other relationships
From 1957 until his death in 1974, Lindbergh had an affair with German hat maker Brigitte Hesshaimer who lived in a small Bavarian town called Geretsried (35 km south of Munich). On 23 November 2003, DNA tests proved that he fathered her three children: Dyrk (1958), Astrid (1960) and David (1967). The two managed to keep the affair secret; even the children did not know the true identity of their father, whom they saw when he came to visit once or twice per year using the alias, "Careu Kent". Astrid later read a magazine article about Lindbergh and found snapshots and more than a hundred letters written from him to her mother. She disclosed the affair after both Brigitte and Anne Morrow Lindbergh had died.

A new German book by Rudolf Schroeck, "The Double life of Charles A. Lindbergh", claims seven secret children in Germany. It says Lindbergh "came and went as he pleased" during the last 17 years of his life, spending between three to five days with his Munich family about four to five times each year. "Ten days before he died in August 1974, Lindbergh wrote three letters from his hospital bed to his three mistresses and requested 'utmost secrecy'," Schroeck writes, whose book includes a copy of that letter to Brigitte Hesshaimer.


Environmental causes
From the 1960s on, Lindbergh became an advocate for the conservation of the natural world, campaigning to protect endangered species like humpback and blue whales, was instrumental in establishing protections for the "primitive" Filipino group the Tasaday and African tribes, and supporting the establishment of a national park. While studying the native flora and fauna of the Philippines, he also became involved in an effort to protect the Philippine eagle. In his final years, Lindbergh became troubled that the world was out of balance with its natural environment; he stressed the need to regain that balance, and spoke against the introduction of supersonic airliners.

Lindbergh's speeches and writings later in life emphasized his love of both technology and nature, and a lifelong belief that "all the achievements of mankind have value only to the extent that they preserve and improve the quality of life." In a 1967 Life magazine article, he said, "The human future depends on our ability to combine the knowledge of science with the wisdom of wildness."

In honor of Charles and his wife Anne Morrow Lindbergh's vision of achieving balance between the technological advancements they helped pioneer, and the preservation of the human and natural environments, the Lindbergh Award was established in 1978. Each year since 1978, the Lindbergh Foundation has given the award to recipients whose work has made a significant contribution toward the concept of "balance".

His final book, Autobiography of Values, was published posthumously.


Death

Lindbergh spent his final years on the Hawaiian island of Maui, where he died of lymphoma[37] on 26 August 1974.[38] He was buried on the grounds of the Palapala Ho'omau Church in Kipahulu, Maui. His epitaph on a simple stone which quotes Psalms 139:9, reads: Charles A. Lindbergh Born: Michigan, 1902. Died: Maui, 1974. If I take the wings of the morning, and dwell in the uttermost parts of the sea. — CAL

Because of earthquake damage to Hawaii State Highway 31, Lindbergh's final resting place is presently accessible by land only via State Highway 360, or the so-called Road to Hana.


Legacy
The Lindbergh Terminal at Minneapolis-Saint Paul International Airport was named after him, and a replica of The Spirit of St. Louis hangs there. Another replica of his plane hangs in the great hall at the recently rebuilt Jefferson Memorial at Forest Park in St. Louis. The definitive oil painting of Charles Lindbergh by St. Louisan Richard Krause entitled "The Spirit Soars" ([1]) has also been displayed there. He also lent his name to San Diego's Lindbergh Field, which also is known now as San Diego International Airport. The airport in Winslow, Arizona has been renamed Winslow-Lindbergh Regional. Lindbergh himself designed the airport in 1929 when it was built as a refueling point for the first coast-to-coast air service. The airport in Little Falls, Minnesota, where he grew up, has been named Little Falls/Morrison County-Lindbergh Field.

In 1952, Grandview High School in St. Louis County was renamed Lindbergh High School. The school newspaper is the Pilot, the yearbook is the Spirit, and the students are known as the Flyers. The school district was also later named after Lindbergh. The stretch of US 67 that runs through most of the St. Louis metro area is called "Lindbergh Blvd." Lindbergh also has a star on the St. Louis Walk of Fame.

In Lindbergh's hometown of Little Falls, Minnesota, one of the district's elementary schools is named Charles Lindbergh Elementary. The district's sports teams are named the Flyers and Lindbergh Drive is a major road on the west side of town, leading to Lindbergh State Park (named after Lindbergh's father).

Lindbergh is a recipient of the Silver Buffalo Award, the highest adult award given by the Boy Scouts of America.

The controversy surrounding his involvement in politics (and to a lesser extent, his personal life) sometimes overshadows the fact that he was an important pioneer in aviation from the 1920s to the 1950s. His 1927 flight made him the first international celebrity in the age of mass media. One U.S. Air Force general remembers Lindbergh's critical view of his own legacy. In the late 1940s, Lindbergh visited U.S. Air Force bases to evaluate American air power (of which he was a staunch supporter) in relation to the emerging Cold War. During this trip, he remarked "I think my flight to Paris came too soon for the civilizations of the world. They were suddenly thrown together by air travel and they weren't quite ready for it."[39]


Awards and decorations
Lindbergh was given many medals. Most were given to the Missouri Historical Society and are on display at the Jefferson Memorial, now part of the Missouri History Museum in Forest Park, St. Louis, Missouri:

Medal of Honor (USA)
Legion of Honor (French)
Royal Air Force Cross (UK)
Hubbard Medal (USA, 1927)
Distinguished Flying Cross (USA)
Service Cross of the German Eagle (German)
Wright Brother Memorial Trophy (USA)
Daniel Guggenheim Medal (USA)
Pulitzer Prize (USA)
Silver Buffalo Award (USA)
Official Royal Air Force Museum medal
Honorary Scout (USA, 1927)[40]

Medal of Honor
Rank and organization: Captain, U.S. Army Air Corps Reserve. Place and date: From New York City to Paris, France, 20-21 May 1927. Entered service at: Little Falls, Minn. Born: 4 February 1902, Detroit, Mich. G.O. No.: 5, W.D., 1928; act of Congress 14 December 1927.

Citation: For displaying heroic courage and skill as a navigator, at the risk of his life, by his nonstop flight in his airplane, the "Spirit of St. Louis," from New York City to Paris, France, 20-21 May 1927, by which Capt. Lindbergh not only achieved the greatest individual triumph of any American citizen but demonstrated that travel across the ocean by aircraft was possible.[41]


Popular culture

Lindbergh's life has spurred the imaginations of many writers and others; the following list provides a summary of notable popular cultural references:

Charles Lindbergh was selected as Time Magazine's Man of the Year in 1927, the first holder of that title.
Shortly after Lindbergh made his famous flight, the Stratemeyer Syndicate began publishing the Ted Scott Flying Stories (1927- 1943) by Franklin W. Dixon wherein the hero was closely modeled after Lindbergh.
Charles A. Lindbergh (1927) was a UK documentary by De Forest Phonofilm based on Charles A. Lindbergh's landmark flight.
A song called "Lindbergh (The Eagle Of The U.S.A.)" was released soon after the 1927 flight. A multitude of other songs included the title "Lucky Lindy" were also released in the aftermath of the Atlantic crossing. Tony Randall, not particularly known for singing, but a fan of old songs, revived the song,"Lucky Lindy", in the 1960s in a collection of jazz-age and depression era songs that he recorded.
The dance craze, the "Lindy Hop" became popular after his flight, and was named after him.
40,000 Miles with Lindbergh (1928) was a documentary featuring Charles A. Lindbergh.
The Agatha Christie book (1934) and movie Murder on the Orient Express (1974) begin with a fictionalized depiction of the Lindbergh baby kidnapping.
Verdensberømtheder i København (1939) was an English/Danish co-production starring Robert Taylor, Myrna Loy and Edward G. Robinson featured Charles A. Lindbergh as himself.
Woody Guthrie wrote a song called "Lindbergh" on "The Asch Recordings Vol. 1" recorded in the 1940s. The song was anti-Lindbergh, and included the line "they say America First but they mean America Next."
The 1942 film, Keeper of the Flame, starring Katharine Hepburn and Spencer Tracy, features Hepburn as the wife of a Lindbergh-like national hero who is secretly a fascist. He intended to use his influence, especially over America's youth, to turn the country into a fascist state and eliminate inferior races. It appears it had been inspired by the controversy surrounding Lindbergh.
James Stewart played Lindbergh in the biographical The Spirit of St. Louis (1957), directed by Billy Wilder.
In Eric Norden's alternate history novel The Ultimate Solution (1973), Norden speculates that Lindbergh would have been president of a Nazi-occupied American puppet state.
The American Experience - Lindbergh: The Shocking, Turbulent Life of America's Lone Eagle (1988) was a PBS documentary directed by Stephen Ives.
In the early 2000s, a full-length musical called "Baby Case," about the Lindbergh Baby Kidnapping and subsequent trial and media circus, was performed at the Arden Theater in Philadelphia to good reviews.
The Philip Roth novel The Plot Against America (2004) is a speculative fiction novel which explores an alternate history where Franklin Delano Roosevelt is defeated in the 1940 presidential election by Charles Lindbergh, who allies the United States with Nazi Germany.